1,226 research outputs found

    Domain-general and Domain-specific Patterns of Activity Support Metacognition in Human Prefrontal Cortex

    Get PDF
    Metacognition is the capacity to evaluate the success of one's own cognitive processes in various domains; for example, memory and perception. It remains controversial whether metacognition relies on a domain-general resource that is applied to different tasks or if self-evaluative processes are domain specific. Here, we investigated this issue directly by examining the neural substrates engaged when metacognitive judgments were made by human participants of both sexes during perceptual and memory tasks matched for stimulus and performance characteristics. By comparing patterns of fMRI activity while subjects evaluated their performance, we revealed both domain-specific and domain-general metacognitive representations. Multivoxel activity patterns in anterior prefrontal cortex predicted levels of confidence in a domain-specific fashion, whereas domain-general signals predicting confidence and accuracy were found in a widespread network in the frontal and posterior midline. The demonstration of domain-specific metacognitive representations suggests the presence of a content-rich mechanism available to introspection and cognitive control

    Characterizing aging in the human brainstem using quantitative multimodal MRI analysis.

    Get PDF
    Aging is ubiquitous to the human condition. The MRI correlates of healthy aging have been extensively investigated using a range of modalities, including volumetric MRI, quantitative MRI (qMRI), and diffusion tensor imaging. Despite this, the reported brainstem related changes remain sparse. This is, in part, due to the technical and methodological limitations in quantitatively assessing and statistically analyzing this region. By utilizing a new method of brainstem segmentation, a large cohort of 100 healthy adults were assessed in this study for the effects of aging within the human brainstem in vivo. Using qMRI, tensor-based morphometry (TBM), and voxel-based quantification (VBQ), the volumetric and quantitative changes across healthy adults between 19 and 75 years were characterized. In addition to the increased R2* in substantia nigra corresponding to increasing iron deposition with age, several novel findings were reported in the current study. These include selective volumetric loss of the brachium conjunctivum, with a corresponding decrease in magnetization transfer and increase in proton density (PD), accounting for the previously described “midbrain shrinkage.” Additionally, we found increases in R1 and PD in several pontine and medullary structures. We consider these changes in the context of well-characterized, functional age-related changes, and propose potential biophysical mechanisms. This study provides detailed quantitative analysis of the internal architecture of the brainstem and provides a baseline for further studies of neurodegenerative diseases that are characterized by early, pre-clinical involvement of the brainstem, such as Parkinson’s and Alzheimer’s diseases

    The future of metacognition research: balancing construct breadth with measurement rigor

    Get PDF
    Foundational work in the psychology of metacognition identified a distinction between metacognitive knowledge (stable beliefs about one’s capacities) and metacognitive experiences (local evaluations of performance). More recently, the field has focused on developing tasks and metrics that seek to identify metacognitive capacities from momentary estimates of confidence in performance, and providing precise computational accounts of metacognitive failure. However, this notable progress in formalising models of metacognitive judgments may come at a cost of ignoring broader elements of the psychology of metacognition – such as how stable meta-knowledge is formed, how social cognition and metacognition interact, and how we evaluate affective states that do not have an obvious ground truth. We propose that construct breadth in metacognition research can be restored while maintaining rigour in measurement, and highlight promising avenues for expanding the scope of metacognition research. Such a research programme is well placed to recapture qualitative features of metacognitive knowledge and experience while maintaining the psychophysical rigor that characterises modern research on confidence and performance monitoring

    The neural basis of metacognitive ability

    Get PDF
    Ability in various cognitive domains is often assessed by measuring task performance, such as the accuracy of a perceptual categorization. A similar analysis can be applied to metacognitive reports about a task to quantify the degree to which an individual is aware of his or her success or failure. Here, we review the psychological and neural underpinnings of metacognitive accuracy, drawing on research in memory and decision-making. These data show that metacognitive accuracy is dissociable from task performance and varies across individuals. Convergent evidence indicates that the function of the rostral and dorsal aspect of the lateral prefrontal cortex (PFC) is important for the accuracy of retrospective judgements of performance. In contrast, prospective judgements of performance may depend upon medial PFC. We close with a discussion of how metacognitive processes relate to concepts of cognitive control, and propose a neural synthesis in which dorsolateral and anterior prefrontal cortical subregions interact with interoceptive cortices (cingulate and insula) to promote accurate judgements of performance

    Re-evaluating frontopolar and temporoparietal contributions to detection and discrimination confidence

    Get PDF
    Previously, we identified a subset of regions where the relation between decision confidence and univariate functional magnetic resonance imaging (fMRI) activity was quadratic, with stronger activation for both high and low compared with intermediate levels of confidence. We further showed that, in a subset of these regions, this quadratic modulation appeared only for confidence in detection decisions about the presence or absence of a stimulus, and not for confidence in discrimination decisions about stimulus identity (Mazor et al. 2021). Here, in a pre-registered follow-up experiment, we sought to replicate our original findings and identify the origins of putative detection-specific confidence signals by introducing a novel asymmetric-discrimination condition. The new condition required discriminating two alternatives but was engineered such that the distribution of perceptual evidence was asymmetric, just as in yes/no detection. We successfully replicated the quadratic modulation of subjective confidence in prefrontal, parietal and temporal cortices. However, in contrast with our original report, this quadratic effect was similar in detection and discrimination responses, but stronger in the novel asymmetric-discrimination condition. We interpret our findings as weighing against the detection-specificity of confidence signatures and speculate about possible alternative origins of a quadratic modulation of decision confidence

    Metacognitive computations for information search: Confidence in control

    Get PDF
    The metacognitive sense of confidence can play a critical role in regulating decision making. In particular, a lack of confidence can justify the explicit, potentially costly, instrumental acquisition of extra information that might resolve uncertainty. Human confidence is highly complex, and recent computational work has suggested a statistically sophisticated tapestry behind the information that governs both the making and monitoring of choices. However, the consequences of the form of such confidence computations for search have yet to be understood. Here, we reveal extra richness in the use of confidence for information seeking by formulating joint models of action, confidence, and information search within a Bayesian and reinforcement learning framework. Through detailed theoretical analysis of these models, we show the intricate normative downstream consequences for search arising from more complex forms of metacognition. For example, our results highlight how the ability to monitor errors or general metacognitive sensitivity impact seeking decisions and can generate diverse relationships between action, confidence, and the optimal search for information. We also explore whether empirical search behavior enjoys any of the characteristics of normatively derived prescriptions. More broadly, our work demonstrates that it is crucial to treat metacognitive monitoring and control as closely linked processes

    Perceptual reality monitoring: Neural mechanisms dissociating imagination from reality

    Get PDF
    There is increasing evidence that imagination relies on similar neural mechanisms as externally triggered perception. This overlap presents a challenge for perceptual reality monitoring: deciding what is real and what is imagined. Here, we explore how perceptual reality monitoring might be implemented in the brain. We first describe sensory and cognitive factors that could dissociate imagery and perception and conclude that no single factor unambiguously signals whether an experience is internally or externally generated. We suggest that reality monitoring is implemented by higher-level cortical circuits that evaluate first-order sensory and cognitive factors to determine the source of sensory signals. According to this interpretation, perceptual reality monitoring shares core computations with metacognition. This multi-level architecture might explain several types of source confusion as well as dissociations between simply knowing whether something is real and actually experiencing it as real. We discuss avenues for future research to further our understanding of perceptual reality monitoring, an endeavour that has important implications for our understanding of clinical symptoms as well as general cognitive function

    The Cognition/Metacognition Trade-Off

    Get PDF
    Integration to boundary is an optimal decision algorithm that accumulates evidence until the posterior reaches a decision boundary, resulting in the fastest decisions for a target accuracy. Here, we demonstrated that this advantage incurs a cost in metacognitive accuracy (confidence), generating a cognition/metacognition trade-off. Using computational modeling, we found that integration to a fixed boundary results in less variability in evidence integration and thus reduces metacognitive accuracy, compared with a collapsing-boundary or a random-timer strategy. We examined how decision strategy affects metacognitive accuracy in three cross-domain experiments, in which 102 university students completed a free-response session (evidence terminated by the participant's response) and an interrogation session (fixed number of evidence samples controlled by the experimenter). In both sessions, participants observed a sequence of evidence and reported their choice and confidence. As predicted, the interrogation protocol (preventing integration to boundary) enhanced metacognitive accuracy. We also found that in the free-response sessions, participants integrated evidence to a collapsing boundary-a strategy that achieves an efficient compromise between optimizing choice and metacognitive accuracy
    corecore